Leader election process

$$ \mathrm{P}[\mathbf{s}(1),\ldots,\mathbf{s}(T)\vert \phi(\alpha)]=\prod_{t=1}^T\prod_{i=1}^N \left[\phi(\alpha_i)\,\delta_{1;s_i(t)}+\{1-\phi(\alpha_i)\}\,\delta_{0;s_i(t)}\right], $$

where we defined the vector $\phi(\alpha)=(\phi(\alpha_1),\ldots,\phi(\alpha_N))$.

$$ 1-\prod_{i=1}^N \left[1-\phi(\alpha_i)\right]. $$

$$ \boxed{f=1-\prod_{i=1}^N \left[1-\phi(\alpha_i)\right]}, $$

i.e. we fix the average number of elections with at least one winner to $fT$.

$$ 1-f=\prod_{i=1}^N \left[1-\phi(\alpha_i)\right] $$

$$ 1-f=\prod_{i=1}^N\tilde{\phi}(\alpha_i) $$